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Abstract 

Weather derivatives based on heating degree days or cooling degree days have 

been traded in financial markets for more than 10 years. Although used by the energy 

sector, agricultural producers have been slow to adopt this technology even though 

agriculture is particularly vulnerable to weather uncertainty. In agriculture, few studies 

have focused on the pricing of weather derivatives for hedging weather risks for crop 

production. In this study, we employ data from an earlier study of climate on corn yields 

in northern China to compare different methods for pricing weather options based on 

growing degree days (GDDs). For pricing weather options, we investigate the use of 

weather indexes based on an econometric approach, a mean reverting stochastic process, 

and simple historical averages (burn analysis). For the econometric model, we use a sine 

function to estimate expected GDDs. The stochastic model is also based on the sine 

function, but employs Monte Carlo simulation with mean-reversion parameters to predict 

daily average temperatures; the reversion parameters are estimated using three alternative 

methods. For the historical approach, a 10-year moving average of GDDs is used. Results 

for the period 2001-2011 indicate that the historical average method fits actual GDDs 

best, followed in order by the stochastic process with a high mean reversion speed 

(0.9763), the econometrically estimated sine function, and the stochastic processes with 

medium (0.2698) and low (0.02399) mean reversion speeds. Depending on the method 

used, premiums for weather derivative options vary from $21.27 to $24.39 per standard 

deviation in GDD.   

Key Words: Stochastic process for pricing weather options; growing degree days; 
agricultural finance 

 
JEL Categories: Q14, G11, G12, G32
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1. INTRODUCTION 

Financial weather derivatives and weather-indexed insurance are alternative 

private-sector instruments that can be used to hedge production risks related to weather 

outcomes. Payoffs depend on a weather index that has been carefully chosen to represent 

the weather conditions against which protection is being sought. The problems of moral 

hazard and adverse selection that exist in traditional crop insurance disappear since the 

value of the weather index does not depend on the individual actions of market 

participants. Although the two hedging methods – weather derivatives and weather 

indexed insurance – are essentially similar, there exist mature exchange markets for some 

financial weather derivatives while weather-indexed insurance relies solely on over-the-

counter (OTC) contracts. Another important difference is that financial weather 

derivatives not only provide economic agents impacted by weather (e.g., farmers, energy 

firms) with a tool for hedging weather risks, but also provide an investment instrument 

that participants in financial markets can purchase for diversifying their portfolios.  

Trading in financial weather derivatives began in 1997, with an OTC contract 

based on heating degree days (HDDs) struck between Koch Industrial and Enron 

Corporation (Brockett et al. 2007). Since then, trading has grown rapidly as the Chicago 

Mercantile Exchange (CME) began offering financial exchange-traded weather 

derivatives based on two weather indexes, HDDs and CDDs (cooling degree days ) 

(Considine 2009). A party wishing to hedge against adverse weather can purchase an 

option on one of these two weather indexes: A call option can be claimed when the value 

of the weather index is above a specified exercise or strike value, while a put option can 

be claimed when the value of the weather index is below a specified value. The cost of 
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acquiring an option is its premium. For call or put options, buyers take a long position, 

while sellers take a short position. 

Weather derivatives can be used to protect against crop losses associated with 

cold weather, extreme heat, and/or too much or too little precipitation, although financial 

rainfall products are generally traded OTC. For example, a crop producer could insure 

against too little growing season warmth by holding a put option based on growing 

degree days (GDDs), which measure the dependence of crops on warmth and are defined 

with respect to a 5oC or 10oC threshold. Alternatively, if precipitation is a concern, an 

option on cumulative rainfall (CR) can be purchased. A farmer could hedge against too 

few GDDs or too little CR by purchasing a put option that reduces the financial risk of 

low crop yield. If the realized weather outcome is at or above the strike value, the farmer 

would not exercise the option and lose the premium paid for the option contract; in that 

case, yields are likely higher than expected, which would more than compensate for the 

premium. If the weather outcome is below the strike value, the farmer receives a payout 

to compensate for the lower yields and reduced revenue from the adverse weather.  

In this paper, we examine potential pricing of weather derivatives in China, which 

is the second largest maize producing country in the world after the United States (FAO 

2010). Crop yields in northern China (mainly areas in Inner Mongolia and Shaanxi 

province) are highly dependent on growing season weather conditions, especially heat 

conditions during the growing season (Sun and van Kooten 2013). Therefore, farmers 

could use a GDD-based financial weather product to mitigate weather risk.  

A number of studies have focused on methods for pricing weather derivative 

contracts, including Alaton et al. (2002), Brody et al. (2002), Campbell and Diebold 
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(2005), and Jewson et al. (2005). In these studies, burn analysis and parametric or non-

parametric methods were used to specify a probability distribution of the weather index, 

or, alternatively, a stochastic process was employed to model weather outcomes. Not 

surprisingly, most studies of weather derivatives focused on market-based HDD or CDD 

indexes in the energy sector (Huang et al. 2008；Goncu 2011; Schiller et al. 2012). In 

agriculture, where financial weather derivatives have not been adopted on the same scale 

as in the energy sector, studies have looked at rainfall or heat index-based weather 

derivatives, using historical data to construct such indexes (Turvey 2001; Stoppa and 

Hess 2003; Vedenov and Barnett 2004；Musshoff et al. 2011; Sun and Lou 2013). 

The main objective of the current study is to examine three pricing methods for 

weather derivatives and compare them on the basis of historic weather conditions and 

weather predictions. The methods we employ to price weather derivatives based on 

GDDs are a weather index distribution method using historic averages (burn analysis), an 

estimated non-stochastic sine function, and a stochastic process with Monte Carlo 

simulation (and three approaches for estimating the mean-reverting parameter). Our 

application is to a major corn growing region in northern China, using historic weather 

data to estimate the required relationships; to do so, we rely on information from an 

earlier study on weather effects on corn yields in northern China (Sun and van Kooten 

2013).  

The study is structured as follows. We begin in the next section with a discussion 

of the development of daily average temperatures, followed by the stochastic method for 

simulating daily average temperatures and description of a weather index distribution 

method to price weather derivatives. We end by discussing and analyzing the results, and 
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making some concluding remarks. 

 2. DATA DESCRIPTION  

Weather data are from the China Meteorological Data Sharing System. A plot of 

daily average temperatures for the period 2001 to 2011 at Etuokeqi in the Inner Mongolia 

Autonomous Region is provided in Figure 1. This 11-year period includes two leap years 

and has 4,017 observations; the daily average temperature over this period is 8.0 0C, with 

a standard deviation of 11.99 0C. The minimum and maximum temperatures are -22.4 0C 

and +29.9 0C, respectively, while daily average temperatures range from -15 oC in winter 

to 25 oC in summer. The figure illustrates the seasonality in average daily temperature 

movements, indicating in particular its similarity to a sine function.  

  
Figure 1: Daily Average Temperatures, 2001 through 2011, Etuokeqi, Inner Mongolia 

(107º59´E, 39º6´N) 

Growing degree days are a measure of the heat to which crops are exposed during 

the growing season. In an earlier study, Sun and van Kooten (2013) show that corn yields 

are negatively impacted when growing season GDDs are too low or high, with GDD 

defined as: GDD =∑
=
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the growing season (May to September) and Td is the average temperature on day d. For 

the 11 years in our sample, the average growing-season GDDs is 1,449.78 0C with a 

standard deviation of 78.97 0C, and minimum and maximum values of 1,294.1 0C and 

1,584.4 0C, respectively. A Shapiro-Wilk test for normality (W-statistic = 0.9683) cannot 

reject the null hypothesis that GDDs are normally distributed (z = -1.121, p = 0.869). 

3 METHODS 

3.1 Model Specification  

A key step in pricing weather derivative contracts is to estimate the expected 

value of the underlying weather index. We examine three methods: (i) historical burn 

analysis, (ii) an estimated econometric model, and (iii) a mean-reverting stochastic 

process with different parameters using Monte Carlo simulation. In the burn analysis, the 

average value over the previous decade is set as the estimated expected value for the 

contract year. Ten years are considered to be a reasonable time window for temperature 

data (Jewson et al. 2005). The mathematical formula is as follows: 

[1] gi = ∑
−

−=

1

10

i

ik
kg , 

where gi refers to growing degree days for year i, and  gk is growing degree days for years 

beginning a decade before year i. 

As is shown in Figure 1, daily average temperatures clearly follow a sine function. 

Daily average temperatures are used to calculate GDDs, and an estimated sine function 

can be used to estimate daily average temperatures. The following functional form is 

assumed: 

[2] T̅t = sin(ωt + θ),  
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where T̅t = ½ (Tt
max + Tt

min) is the mean of the daily average temperature at day t (= 1, 

2, …, 365 or 366). Thus, while average daily temperatures T̅t follow a sine curve, the 

realized average temperature (Tt) on a given day t fluctuates randomly about that average. 

Further ω = 2π/365 since the oscillation period is one year. As the yearly minimum and 

maximum mean temperatures do not usually occur at the troughs and peaks in Figure 1, a 

phase angle θ is introduced in the mean temperature model. In addition, as the global 

temperature gets warmer, there might be a positive upward trend in the data. Therefore, 

the model for the mean daily average temperature might have the following form: 

[3] T̅t = b0 + b1 t + b2 sin(ωt + θ), 

where bi and θ are parameters to be estimated and t is a trend variable causing T̅t to rise 

over time. We can then rewrite equation [3] as: 

[4] T̅t = b0 + b1 t + b2 (cos θ × sin ωt + sin θ × cos ωt)  

= b0 + b1 t + a2 sin ωt + a3 cos ωt,  

where b0, b1, a2 (= b2 cos θ) and a3 (= b2 sin θ) are parameters to be estimated. 

 As temperatures cannot rise or fall indefinitely, a stochastic process model cannot 

allow temperature to deviate much from its mean value in the long run. In other words, 

the stochastic process describing the temperature should have a mean-reverting property. 

Temperature can be modelled by the following mean-reverting process, which is an 

example of an Ito Process (Dixit and Pindyk 1994): 

[5] dTt = α (T̅t – Tt) dt + σt dwt 

where α(T̅t – Tt) is a drift term and σtdwt is the dispersion of the Weiner process wt 

(Brownian motion), with dwt ~ N(0 dt ) and σt is the volatility of the daily average 
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temperature. In this case, Tt is the realized or actual daily average temperature, 𝑇�𝑡 is the 

mean average temperature for day t, and α is the speed of reversion to the mean 

temperature. Thus, the stochastic difference equation [5] describes an Ornstein-

Uhlenbeck process. 

Because the drift term in [5] only ensures that temperatures revert toward the 

mean cyclical temperature (Figure 1), it is necessary to add a component that ensures the 

temperature also reverts toward the long-run average temperature. To do so, Alaton et al. 

(2002) added the following dT̅t/dt term to the drift component: 

[6]  𝑑𝑇
�𝑡
𝑑𝑡

 = a1 + b2 ω cos (ωt + θ). 

Then the mean-reverting process in equation [5] can be written as 

[7] dTt =[α (T̅t – Tt)+
dt
Td t ] dt + σt dwt.  

Assuming the first day is s and the final day is t, the general solution to equation 

[7] is: 

[8] Tt = T̅t + (Ts – T̅s) e– α(t–s) + ∫ −
t

s

t dwe ττ
τα σ)( ,  

where τ ∈  [s, t] and other terms are defined as previously.  

3.2 Parameter Estimation 

Any ∆w corresponding to a time interval ∆t satisfies the following equation (Dixit 

and Pindyk 1994; Alaton et al. 2002): 

[9]  ∆w = γt (∆t)½ , 

where γt~N(0,1) is a random variable that is serially uncorrelated so E[γt, γs]=0 for t≠s. As 
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∆t becomes infinitesimally small, we can represent the increment of a continuous Wiener 

process, dw, in time t as: 

[10] dw = γt (dt)½. 

The temperature variation tσ̂  can be defined as (Alaton et al. 2002): 

[11] ∑
=

−−=
iN

t
tt

mi
t TT

N 1

2
1

,

)(1σ̂ , 

where Tt is defined as above, and i is the number of periods (years) used to determine the 

average temperature T̅; and Ni,m is the number of days in month m in year i. 

The speed at which the process reverts back to the mean (α) is an important 

parameter. Three methods are used to estimate the parameter: a first-order autoregressive 

process AR (1), a discrete-time data equation and a martingale estimation function. 

Consider first the AR(1) process for temperature: 

[12] Tt = c0 + c1Tt–1 + δt,  

where c0 and c1 are parameters to be estimated, and δt is a normally distributed random 

variable with zero mean. The estimated parameter c1, which measures the speed that 

today’s temperature reverts back to yesterday’s temperature, is identically the mean-

reverting parameter α, so 𝛼�1 = 𝑐̂1. 

The parameters of the mean-reverting process could also be estimated using the 

discrete-time data equation (Dixit and Pindyk 1994): 

[13] Tt – Tt–1 = d0 + d1Tt–1 + ζt, 

where d0 and d1 are parameters to be estimated, and ζt is a normally distributed random 

variable with zero mean. Then, by estimating the parameters in [13], we obtain a second 
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estimate of the mean-reversion parameter as  𝛼�2= –ln(1+d̂1). 

Finally, the martingale estimation function can also be used to estimate α. Based 

on Bibby and Sørensen (1995), Alaton et al. (2002) derive the following estimate of the 

mean-reversion parameter:  

[14] 

( )( )

( )( )


















−−

−−

−=

∑

∑

= −

−−−−

= −

−−

N

t t

tttt

N

t t

tttt

TTTT

TTTT

1
2

1

1111

1
2

1

11

3 lnˆ

σ

σα , 

where 𝑇�𝑡 is the average daily temperature from the previously estimated sine-function, Tt 

is again the realized average temperature, and σt is the standard deviation of the realized 

daily average temperatures for day t. 

3.3 Payoffs and Premiums of Put and Call Options 

Farmers can purchase a put option in the event that the weather index (growing 

degree days) is too low, or a call option in the event that it is too high. From the 

standpoint of the buyers, the payoff functions for put and call contracts are given by 

(Jewson et al. 2005): 

[15] 𝑝(𝑥)𝑝𝑢𝑡 = �𝐷(𝐾1 − 𝑥), 𝑥 ≤ 𝐾1
0,          𝑥 > 𝐾1

� ,  

[16] 𝑝(𝑥)𝑐𝑎𝑙𝑙 = �
0,          𝑥 < 𝐾2

𝐷(𝑥 − 𝐾2),  𝑥 ≥ 𝐾2
� ,  

where p(x) is the payoff; D is the tick size (dollar value per unit of the weather index); K1 

and K2 are the strike (trigger) values for the put and call options, respectively; and x is the 

weather index. For put and call contracts, these are the payoffs against low and high 

values of the weather index, respectively. 



10 
 

Using historic daily average temperatures and assuming that the weather index 

employed for a financial instrument follows a normal distribution, the expected payoff is 

(Jewson et al. 2005): 

[17] Ep = ∫
∞

∞−
dxxpxf )()( , 

where f(x) is the probability density function (PDF) of rainfall, growing degree days or 

whatever measure is used for the weather index, and p(x) is the payoff associated with the 

financial instrument for each outcome x of the weather variable or index. Denote the 

payoffs for put and call options as p(x)put and p(x)call, respectively. Upon transforming the 

weather index into a standard normal distribution, the payoff function becomes, 

[18] Ep = ∫
∞

∞−
dxxpz )()(1 φ

σ
, 

where σ is the standard deviation of the weather index and )(zφ is the probability density 

function (PDF) of a standard normal distribution, 
σ
µ−

=
xz  and f(x) = 

σ
φ )(z .  

Inserting payoff functions [15] and [16] for the put and call contracts into [18] 

gives the following respective closed-form functions for uncapped put and call options:  

[19] Ep,PUT = )()(1
1

11
1

1 µ
σ
µ

σ
µσφ

σ
µφ

σ
−






 −

Φ+





 −

=





 −

−∫ ∞−
KKDKDdxxxKD

K
,  

[20] Ep,CALL= 













 −

Φ−−+





 −

=





 −

−∫ ∞− σ
µµ

σ
µσφ

σ
µφ

σ
2

2
2

2 1)()(1 1 KKDKDdxxKxD
K

, 

where µ is the mean value of the weather index; K1 and K2 are the lower and upper strike 

values, respectively; φ and Φ refer to the normal probability density function and the 

cumulative probability distribution (CDF), respectively; and x is the weather index. 



11 
 

Let k1 = 
σ
µ−1K = –m and k2 = 

σ
µ−2K = m, where m = {0.2, 0.4, …, 2.0}. Then 

equations [19] and [20] can be written as:  

[21] Ep,PUT = D σ [ )( m−φ – m Φ(–m)] and  

[22] Ep,CALL = D σ [ )(mφ – m + m Φ(–m)]. 

The price of an option (or its premium) is calculated from the expected payoff as (Alaton 

et al. 2002): 

[23] c = e–r(u-v)Ep,  

where c is the premium that the hedgers (buyers) need to pay for a contract, r is a risk-

free periodic market interest rate, v is the date that the contract is issued (purchased), and 

u is the date the contract is claimed or the expiration date. For the stochastic model, Ep is 

based on predicted temperatures; for the weather index distribution model (discussed 

further below), it is based on the historic mean value of the corresponding weather index 

and its historic distribution. The seller of the option would expect a reward for taking on 

risk and, hence, the premium would be higher than the expected payoff by an amount 

known as the risk loading, which is often between 20% and 30% of the payoffs (Jewson 

et al. 2005). In the current application, we set the risk loading at 20% of the expected 

payoff of the contract.  

4. RESULTS 

The parameters of the sine-function are estimated using linear estimation and are 

provided in Table 1. Using the results from Table 1, we can write the equation for mean 

temperatures as:  
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[24] T̅t = 8.18 + 15.8 sin[(2π/365) t – 1.76]. 

From [24], it is evident that the average temperature is 8.18 0C, and there appears to be no 

warming trend. As the estimated parameter for the time-trend variable t is not significant, 

the model is re-estimated with the time trend variable removed. We can see that the 

magnitude of the remaining parameters changes only slightly, while R̅2 does not change. 

This model explains 89.4% of the variation in daily average temperatures. As shown in 

Figure 2, as the errors only deviate slightly from a normal distribution, it is assumed that 

the errors are normally distributed. 

Table 1: Estimated Parameters for Sine Function, With and Without a Time Trend 

 
Estimated with time trend t Estimated without time trend t 

Explanatory 
variable 

Estimated 
Coefficient 

Standard                     
Error        

prob> t-
statistic 

Estimated 
Coefficient 

Standard                                            
Error                                                    

prob> t-
statistic 

t 0.000676 0.000922 0.463    

sin(ωt) -2.92 0.137 0 -3.00 0.086 0 

cos(ωt) -15.52 0.086 0 -15.51 0.086 0 

constant 8.05 0.179 0 8.18 0.061 0 

R̅2 0.894   0.894   

 

 
Figure 2: Quintiles of normal distribution plot for errors 
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From the 11-year historic daily temperature data, the estimated values of σ are 

given in Table 2. The regression results for two of the three alternative estimates for the 

mean-reverting speed parameter, namely, equations [12] and [13], are as follows:  

[25] Tt = 0.38 + 0.9763Tt–1, R̅2=0.956, 
     (0.05)   (0.0033） 

[26] Tt – Tt–1 = 0.3801 – 0.0237Tt–1 ，R̅2=0.012, 
              (0.0478)   (0.0033） 

The estimated values for the mean reversion speed are 𝛼�1 = 0.9763 (estimated from the 

AR (1) process) and 𝛼�2= –ln (1-0.0237) = 0.02399 (estimated from the discrete-time data 

equation). Finally, using martingale estimation function [14], we find 𝛼�3 =0.2698.  

Table 2: Estimated σ for each of the 12 Months 
Month Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. 
σ 2.72 2.68 3.43 3.45 2.88 2.28 2.27 1.95 2.28 2.42 2.45 2.79 
 

Fluctuations of historic and estimated (predicted) daily average temperatures are 

provided in Figure 3, and these indicated that estimates using the sine function (solid line) 

fit the trend of the actual daily average temperatures (dots) quite closely. By adding a 

Wiener process to the sine function, we then simulate the daily average temperatures 

using Monte Carlo simulation with different mean reversion speeds – parameters from 

the AR (1) process, discrete-time data equation and the Martingale estimation function. 

We also predict the daily average temperatures only by the sine function without the 

stochastic process. Finally, we generate the weather index (GDDs) from the estimated 

daily average temperatures.  

 To compare the estimated growing degree days by different methods and with 
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different mean reversion parameters, the variations between estimated and actual GDDs 

over the period of 2001 and 2011 are plotted in Figure 4, with values presented in Table 3. 

The absolute variations between estimated and actual GDDs, measured from the smallest 

to the largest, are those based on the historical average method (H), the stochastic process 

with a high mean reversion speed of 0.9763 (R1), and the method based on the sine 

function without a stochastic process (M). The remaining estimated variations, R2 (with 

mean reversion speed of 0.270) and R3 (with mean reversion speed of 0.024), are much 

larger and, thus, are excluded from further analysis. In other words, the historical average 

values of the historical GDDs fit the actual GDDs best, followed by the simulated GDDs 

from the stochastic process with a high mean reversion speed (α1) and by the sine 

function without a stochastic process.   

 
 
Figure 3: Fluctuation of historical daily average temperatures from estimated sine curve 

(line: estimated sine curve; dots: historical data) 

In the mean reversion method, the performance in predicting growing degree days 

declines in going from the stochastic process with a high mean reversion speed 
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(estimated from the autoregressive function) to the estimated sine function without a 

stochastic process. This is followed by the stochastic process with a low mean reversion 

speed (estimated from the martingale estimation function), with the stochastic process 

with a low mean reversion speed (estimated from the discrete-time data equation) proving 

to perform worst according to our criterion – the value of the mean value of the annual 

absolute deviations. Therefore, when pricing weather derivatives, the first choice is the 

weather index based on the distribution of historic means, followed by a method based on 

the mean reversion method with a high mean reversion parameter estimated from the 

autoregressive function. 

 
Figure 4: Differences between estimated GDDs and actual GDDs, 2001-2011 

(Variations: M from sine-function; R1 from stochastic model with 𝛼�1; R2 from stochastic 
model with  𝛼�2; R3 from stochastic model with  𝛼�3; H from average value for past decade) 
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Table 3: Variations between estimated and realized GDDs, 2001-2011a 

Variation 

Average of 
annual 

absolute 
variationsa  

Estimated expected 
value for GDD in 

2012 
   Method 1: Sine function (M) 73.59  

Method 2: Mean reversion 
 

1494.91 

 
 

R1 70.02  
R2 

1487.06 
444.24  1894.98 

R3 99.10  1540.98 
Method 3: Historic average (H) 64.18 

a Used as the standard deviation of the GDD in the pricing of weather derivative contracts. 
1455.71 

To price the financial weather derivatives, we assume a tick size D=$1 and risk 

free interest rate r=0.08, ∆t=3/4year (time between the issue date and the expiry date), 

and risk loading b=20%. Results for our study region in northern China are provided in 

Table 4. The premiums are the same for the estimated GDDs from the sine function and 

from the stochastic process with a high mean reversion speed; these, in turn, are 9% 

below those when GDDs are estimated from the historical average. As the GDDs from 

the historical average method track realized GDDs more closely, however, the premium 

from this method might well be more accurate. The method of the stochastic process with 

Monte Carlo simulation, or the econometric method using sine function, undervalues the 

premiums of the weather derivative contracts. 
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Table 4: Specification of GDD optionsa  
Items Put Option Call Option 
   Weather Index GDD GDD 

Strike Level (K1 or K2) 
1455.710C–0.2×64.180C 1455.710C–0.2×64.180C 
1487.060C–0.2×70.020C 1487.060C –0.2×70.020C 
1494.910C –0.2×73.590C 1494.910C–0.2×73.590C 

Tick Size (D) $ 1 $ 1 

Premiumb 
$ 21.27 $ 21.27 
$ 23.20 $ 23.20 
$ 24.39 $ 24.39 

Payoff Max (K1 –GDD, 0) Max (GDD–K2, 0) 
Issue date December 31, 2011 December 31, 2011 
Maturity date September 31, 2012 September 31, 2012 
a The strike values are μ–0.2σ, or m=0.2; when m=0.2, φ (-0.2)=0.3910, Φ(-0.2)=0.4207, 
φ (0.2)=0.3910, and Φ(0.2)=0.5792. The premiums are calculated from payoff equations 
[21] and [22], and using [23] plus a 20% risk loading factor to calculate the premiums. 
b Premium for a standard deviation difference in mean weather index for the M, R1 and H 
approaches to estimating GDDs.  

5. CONCLUSIONS 

The agricultural sector is particularly vulnerable to weather risks, but financial 

weather derivatives can be developed to reduce farmers’ exposure to such risk. This may 

particularly be the case for developing counties where a large portion of the population is 

still dependent on agriculture and government insurance and other support is lagging. 

Indeed, studies have shown that farmers in central and northwestern China, for example, 

are interested in weather indexed insurance (Turvey et al. 2009; Liu et al. 2010). Given 

that farmers are interested in financial weather products in China, in this study we 

focused on the setting of premiums for puts and calls on growing-degree-day weather 

options. We used existing relationships between corn yields and weather parameters for 

northern China (Sun and van Kooten 2013).  

We considered several models for forecasting future temperatures upon which to 
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base a GDD weather index. These in turn would determine the premiums that markets 

would charge, excluding transaction costs. We investigated a more traditional burn 

analysis, which employed a simple historic temperature trend regression, several models 

that used a sophisticated stochastic process, and a Martingale approach. We found that a 

simple autoregressive AR(1) process led to the best approximation of realized 

temperatures and that premiums for options based on a GDD weather index derived from 

the estimated AR(1) model were lower than premiums derived from other methods. 

Further, if temperature was assumed to follow a stochastic process, the mean reversion 

parameter obtained from the AR(1) method gave a better result compared with other 

methods for mean reversion speed estimation.  

Projecting future temperatures and growing degree days is fraught with 

uncertainty, which is why farmers wish to hedge against weather risk. However, markets 

need to provide farmers with hedges that are attractive, effective and truly representative 

of the risks producers encounter. Further research is required to better link crop yields to 

growing degree days – to match crop losses due to weather risks to the weather index – 

and to identify a proper tick size for pricing GDD-based weather derivatives. 
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